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Abstract. Using the transfer matrix technique, finite-size scaling, phenomenological
renormalization group and conformal invariance ideas, we studied the model of polymers with
crossing bonds on the square lattice. We define an activityx = e−βµ for bonds and an activity
y = e−βεe−2βµ for a crossing of two bonds, whereε is the interaction energy between the two
bonds. We calculated the correlation length for two strips of widthsL andL′ and we found the
fixed points of the phenomenological renormalization group equations. Within this formalism,
we obtained the phase diagram for this model which shows three phases, two of them being
polymerized. The estimated values of the exponentsν andη along the transition between the
non-polymerized phase and regular polymerized phase are consistent withν = 3

4 andη = 5
24,

believed to be exact fory = 0.

1. Introduction

Polymers modelled as self- and mutually avoiding walks on regular lattices in two
dimensions have been extensively studied using several techniques, such as series expansions
[1] and finite-size scaling and phenomenological renormalization group ideas in models for
linear polymers [2], or branched polymers [3, 4]. Here, we solve models defined on strips
with different widths,L, and infinite length, calculating relevant thermodynamic quantities.
Then we accomplish some process of extrapolation of the results for the two-dimensional
limit L → ∞. In particular, we consider models defined on strips of two widths,L

andL′, and search for fixed points of the phenomenological renormalization group (PRG)
equation [5]

ξL(τ )

L
= ξL′(τ

′)
L′

(1)

whereτ is some relevant parameter defined in the model andξ is the correlation length.
Furthermore, the exponentν can be easily estimated through

1+ 1

ν
= ln[ dξL(τ )

dτ /
dξL′ (τ )

dτ ]τc
ln(L/L′)

(2)

whereτc is the fixed point value obtained by equation (1).
In order to calculate the longitudinal correlation length of the model defined on strips,

we use the transfer matrix technique, since the two largest eigenvalues of this matrix are
related toξ by [6]

ξ−1 = − ln

(
λ2

λ1

)
(3)
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Figure 1. (a) A possible configuration for a polymer in a square lattice. The contribution of
this configuration to the partition function is equal tox11y. (b) Configuration of a polymer on
the dual lattice equivalent to the one shown above.

whereλ1 andλ2 are the largest and the second largest eigenvalues of the transfer matrix,
respectively.

For large widths,L, and at the critical condition of the two-dimensional model,
the correlation length on strips with transverse periodic boundary conditions grows
proportionally toL, and using conformal invariance ideas, it is possible to relate the
amplitude of the critical correlation length on the strips as a function ofL to the exponent
η of the critical decay of correlations in the two-dimensional model [7]

ξL(τc)

L
∼= 1

πη
. (4)

This is correct asymptotically in theL→∞ limit and will be used to lead to an estimate
for the exponentη.

Our model will be defined in section 2, while in section 3 the results are presented and
discussed. The conclusion can be found in section 4.

2. The model

We study the model of a polymer with crossing bonds on a two-dimensional square lattice
with periodic boundary conditions (see figure 1). The polymer in our problem is modelled as
a walk that may only pass once through each bond of the lattice, but is allowed to cross itself
at sites of the lattice. We consider that a bond has an activityx = e−βµ, while a crossing
of two bonds has an activityy = e−βεe−2βµ, whereε is the interation energy between the
two bonds. Ifε < 0 we have attractive interactions between crossing bonds, which favour
compact configurations of the polymer. Ifε > 0 crossing bonds have repulsive interactions,
and they have an effect similar to the excluded volume interactions, favouring extended
configurations of the chain. In theε →∞ limit, that is, wheny → 0, we have the linear
polymer or self-avoiding walk (SAW) case [2] which corresponds to then → 0 limit of
the magnetic model of spins withn components [8, 9]. For this two-dimensional magnetic
model, the critical exponents are known exactly as functions ofn [10] and their values
are ν = 3

4 and η = 5
24, whenn → 0. It should also be remarked that the model we are

considering is equivalent to a restricted model of SAW’s on a square lattice with both first
and secondneighbour steps in the particular case where the activity of a monomer located
on a site of the lattice and incorporated into the polymer is equal tox and a Boltzmann
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Figure 2. A strip of width L = 4 with a possible configuration of the polymer.

factor y is associated to each crossing of two bonds on an elementary square of the lattice.
The equivalence of both models is easily shown since each configuration of the first model
may be mapped into one configuration of the second model on the dual lattice, as may be
seen in figure 1.

A model quite similar to the one we are considering here was solved on Bethe and
Husimi lattices [11], and for lattices with coordination numbers larger than 4 only one
polymerized phase was found, whose transition to the non-polymerized phase could be of
first or second order, these two transition lines being separated by a tricritical point. For an
Husimi lattice of coordination number four, however, a qualitatively different phase diagram
was found, with two distinct polymerized phases. This result was one of the motivations of
the present calculation, since one might ask if on the square lattice similar phase diagrams
will be found for this model.

In order to accomplish the study, we define the model on strips of widthL and infinite
length (see figure 2) and, building the transfer matrix (that is defined in the appendix) for
a pair of widths,L andL′, we are able to calculate the correlation length on the strips and
then, using equation (1), to findxc for a fixed value ofy. Since the size of the transfer
matrix increases quickly with growing values ofL, computational limitations force us to
restrict our calculations toL 6 9. Before performing the numerical computations, we use
the symmetries of the model to block-diagonalize the transfer matrix, thus reducing the
size of the matrices whose eigenvalues we need to obtain. It is known that usually the
best results with the phenomenological renormalization group are obtained if one choses
L′ = L + 1. However, in our calculations we notice parity problems which lead us to
chooseL′ = L+ 2. So, we study the pairs 3-5, 4-6, 5-7, 6-8 and 7-9, obtaining the phase
diagrams for each pair of widths. We calculate the values of the exponentsν and η and
compare them with results in the literature. The need to study pairs of widths with the same
parity can be understood to be related to our choice of boundary conditions for the walk
as follows. For a strip with an odd widthL a column may be connected to the previous
column through all the horizontal bonds between them, but this is not possible for strips
of even widths. Thus, there exists a frustration effect which forces us to compare strips of
widths with the same parity.

3. Results and discussion

All phase diagrams we obtained show three distinct phases: a non-polymerized phase, NP,
a usual polymerized phase, UP, and a dense polymerized phase that has a predominance
of crossing bonds, DP. In this last phase, the polymer becomes more compact. The two
first phases were expected to appear, since one point of this boundary between them, that
corresponds toyc = 0, is the usual polymerization transition and was studied by a variety
of techniques, including the one we are employing here [2]. In relation to the third phase,
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Figure 3. Phase diagrams for pairs 3–5 (♦), 4–6 (M), 5–7 (◦ ), 6–8 (×) and 7–9 (�).

Table 1. Results obtained for the first transition for two values ofyc.

L L′ xc(yc = 0) ν(yc = 0) xc(yc = 0.1) ν(yc = 0.1)

3 5 0.375 076 84 0.741 718 65 0.371 227 81 0.733 821 96
4 6 0.377 291 28 0.746 214 55 0.373 352 55 0.738 366 57
5 7 0.378 185 87 0.748 252 62 0.374 266 59 0.740 852 21
6 8 0.378 575 97 0.749 207 20 0.374 698 38 0.742 372 91
7 9 0.378 764 52 0.749 667 81 0.374 927 28 0.743 407 78

Table 2. Extrapolation ofxc andν to the two-dimensional system.

yc xc ν

0 0.379 047± 0.000 006 0.750 03± 0.000 05
0.1 0.375 353± 0.000 003 0.751± 0.001

we had an indication of its existence, since it appears in the solution of the model on a
four-coordinated Husimi lattice [4]. Figure 3 shows the phase diagrams.

From the observation of the phase diagrams, it may be noted that the tendency
for asymptotic behaviour of the boundary between the non-polymerized and the usual
polymerized phases (henceforth called first boundary) is much more regular than the one for
the other boundary (indicated by second boundary). This affects the results for the critical
exponentsν andη as well. A consequence is that, for the first boundary the exponents show
a regular asymptotic behaviour. This can be noted if we look at table 1 which presents the
values ofxc and the exponentν obtained foryc = 0 andyc = 0.1 for all widths studied.
To calculate the exponentη, we extrapolated the sequence of estimates forxc first and then
applied equation (4) for each width. Therefore, we obtained a sequence of estimates forη

that may itself be extrapolated. To accomplish the extrapolations we use the ideas presented
in [12]. Table 2 shows the values ofxc andν extrapolated for the two values ofyc given
above. From this table, it may be noted that the exponentν remains constant on different
points of the boundary, that is, the estimates indicate that the whole boundary belongs to the
same universality class. Table 3 presents the values of the exponentsη calculated using the
estimates forxc extrapolated from the values in table 2 in equation (4), while table 4 shows
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Table 3. Values ofη obtained using thexc as extrapolated in table 2.

L 3 4 5 6 7 8 9

η (yc = 0) 0.233 039 40 0.221 552 35 0.216 246 27 0.213 580 79 0.212 097 65 0.211 193 38 0.210 601 20
η (yc = 0.1) 0.243 012 92 0.231 097 74 0.225 078 66 0.221 730 87 0.219 669 81 0.218 297 16 0.217 333 28

Table 4. Values ofη obtained for the two-dimensional system for the values ofyc of table 3.

yc η

0 0.2084± 0.0004
0.1 0.212± 0.004

the extrapolated values forη. It may be seen that the exponentη also remains constant,
within the error bars, along the boundary.

After a comparison of the values obtained in this work with previous results, we can
conclude that they are in very good agreement. The best value ofxc (for yc = 0) in the
literature was found using series expansions in [1] and isxc = 0.379 0523± 0.000 0002.
The value obtained in by us isxc = 0.379 047± 0.000 006. The exact values of the
exponents are believed to beν = 3

4 andη = 5
24 [10]. We foundν = 0.750 03± 0.000 05

andη = 0.2084± 0.0004 fory = 0.
With respect to the second boundary, it is interesting to note in figure 3 that it approaches

the first one, but does not touch it. These boundaries will only touch in theL,L′ → ∞ limit,
that is, when we reach the two-dimensional system. For finite widths there are limitations
in the technique. From equation (3), we can observe that we must compare the two largest
eigenvalues of the transfer matrix. These eigenvalues are related to the phases which become
critical at the boundary. The eigenvalue associated to the non-polymerized phase is equal to
1 (corresponding to the empty lattice), while the other phases have eigenvalues calculated
using the transfer matrix. When we are on the second boundary, the two largest eigenvalues
of the matrix are larger than 1. However, if we walk on this frontier in direction of decreasing
values ofx, the eigenvalues become smaller, until one of them becomes smaller than 1.
Thus, we are unable to obtain results below this limiting value ofx.

The nature of the transitions on the two boundaries may not be known directly from our
calculations. Although PRG calculations should lead to reasonable results on second-order
transitions only, fixed points may also be present where the transition is of first order [13].
The solution of the model on the four-coordinated Husimi lattice [4] displays a tricritical
point and a critical endpoint. These higher-order critical points might be found using three
widths renormalization [3], but we found no solutions for the corresponding fixed point
equations. It should be mentioned that the same situation also occurs for the model of an
attractive walk on the square lattice [14–16].

One way to study the nature of the three phases of the model is to look at the
thermodynamic properties of the model on strips of large widths. Although the second
transition is not present in those one-dimensional models, it is possible to know at least
qualitatively what the behaviour of the two-dimensional model is, by finding a sequence of
values for the relevant densities for the model defined on strips of increasing widthsL and
then performing some extrapolation on them. The densities are defined as

ρx = 〈Nx〉
N

(5)
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and

ρy = 〈Ny〉
N

(6)

where〈Nx〉 is the average number of bonds,ρx is the density of bonds,〈Ny〉 is the average
number of crossing bonds andρy is the density of crossing bonds in a strip of widthL, N
sites and lengthM = N

L
. These average numbers are related to the largest eigenvalue,λ1,

of the transfer matrix by

〈Nx〉 = Mx ∂
∂x

ln λ1 = Mx

λ1

∂λ1

∂x
(7)

and

〈Ny〉 = My ∂
∂y

ln λ1 = My

λ1

∂λ1

∂y
. (8)

Thus, the densities are

ρx = 1

L

x

λ1

∂λ1

∂x
(9)

and

ρy = 1

L

y

λ1

∂λ1

∂y
. (10)

We studied the behaviour of these densities for fixed values ofx as functions of the
activity y. Two values ofx were considered:x = 1.0 andx = 0.4. It may be noticed in
figure 3 that the results for the densities show a clear parity effect, which prevents us from
attempting any extrapolation of the full data set forL→∞. Since at least four values are
needed to perform an extrapolation [12], only the set of data for odd widths could lead us
to any result. Unfortunately even this set did not provide meaningful extrapolations in the
whole range of the activityy, so we will limit ourselves to consider the behaviour of the
densities for odd widths, as shown in figures 4 and 5. It may be noticed from the behaviour
of the densities as functions ofy that forx = 1.0 the increase of the densities in the region of
the transition is rather smooth, while a much steeper increase is obtained forx = 0.4. These
results indicate the possibility that the transition between the two polymerized phases could
be of first order for low values ofx, turning into a second-order transition asx increases.

Figure 4. Density of bondsρx for widths 3 (♦), 5
(�), 7 (?) and 9 (◦ ). Heavy curves correspond to
x = 1.0 and light curves tox = 0.4.
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Figure 5. Density of crossing bondsρy for widths
3 (♦), 5 (�), 7 (?) and 9 (◦ ). Heavy curves
correspond tox = 1.0 and light curves tox = 0.4.

Figure 6. Sum of densitiesρx + ρy for widths 3 (♦),
5 (�), 7 (?) and 9 (◦ ). Heavy curves correspond to
x = 1.0 and light curves tox = 0.4.

The results for the total densitiesρx + ρy shown in figure 6 also show similar behaviours,
indicating that the total density has a value very close to 1 in the dense polymerized phase.
Also, our calculations indicate that the transition between the non-polymerized phase and
the regular polymerized phase is of second order, while the transition between the non-
polymerized phase and the dense polymerized phase is discontinuous. The model may be
solved exactly on the square lattice forx = 0, since in this case only two configurations are
possible: the empty lattice (whose dimensional free energy per site is equal to 0) and the
configuration for which there is a crossing of two bonds at every site of the lattice (with
f = − ln y). Therefore, a first-order transition occurs aty = 1 from the non-polymerized
phase to a phase withρ = ρy = 1. This result, together with the PRG results, suggest
that the transition line between the non-polymerized and dense polymerized phases may be
approximated byy ≈ 1. Consistently, a critical endpoint should be located close toycep≈ 1
andxcep≈ 0.31.

Despite our effort to obtain estimates for the critical endpoint and the tricritical point
using methods such as the three widths renormalization and considering the next largest
eigenvalue [3], no consistent results were obtained. Possibly better results at these special
points would be obtained if larger widths could be considered. Although it might be expected
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Figure 7. Exponentη for the second boundary for
widths 3–5 (♦), 4–6 (M), 5–7 (◦ ), 6–8 (×) and 7–9
(�).

that the PRG should not give meaningful results for the location of a first-order transition,
this is not the case in our calculations and also in studies of other models [13].

As expected, the estimates for the exponentsν andη at the transition between the two
polymerized phases, are quite poor. We show in figure 7, the exponentη as function ofx.
The behaviour of the exponentν is quite similar. The particularly irregular behaviour for
small values ofx may be due to the fact that the transition there is of first order. Again
better results should be expected if it were possible to consider strips of larger widthsL.

4. Conclusion

As final observations, we can conclude that the model of polymers with crossing bonds
on the square lattice shows a phase diagram with three phases: a non-polymerized phase,
corresponding to the empty lattice; a usual polymerized phase, which corresponds to the
linear polymers with some crossing bonds; and finally a dense, or saturated, phase in which
the polymer has a predominance of crossing bonds, being more compact and having the
following properties:ρx + ρy ≈ 1 andρx = 0 andρy = 1 in the x → 0 andy → ∞
limits. The transition between the non-polymerized and dense polymerized phases is of
first order and may be approximated by a horizontal straight line located aty = 1. In
the case of the boundary between the non-polymerized and the usual polymerized phases,
the transition is a second order one, which ends at a critical endpoint atxcep ≈ 0.31 and
ycep ≈ 1. Finally, the transition between the two polymerized phases is a first order one
from (xcep, ycep) to (xtcp, ytcp). At this point, there is a tricritical point that should have
0.4 6 xtcp 6 1.0. We used the phenomenological renormalization method of three widths
and another method considering the next largest eigenvalue [3] to obtain some estimate of
this tricritical point but we were not successful. Beyond the tricritical point the transition
is of second order. It is important to note that the usual phenomenological renormalization
method in principle should apply only to second-order transitions, but in other models
meaningful results were obtained for first-order transitions as well [13]. In figure 8 we
show a sketch of the conjectured phase diagram for the model on the square lattice.

The estimated value of the critical activityx wheny = 0 is xc = 0.379 047±0.000 006
in agreement with the known valuexc = 0.379 0523± 0.000 0002 [1]. The values obtained
for the exponentsν and η at the first transition (between the non-polymerized and the
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Figure 8. Sketch of the phase diagram for our model on the
square lattice. Full curves represent second-order transitions
and broken curves indicate first-order transitions.

usual polymerized phase) areν = 0.750 03± 0.000 05 andη = 0.2084± 0.0004, again
in agreement with the expected valuesν = 3

4 and η = 5
24 [10]. The exponents of the

first boundary remain constant, within the error bars, as functions ofy, as expected from
universality.

The calculations for the second transition (between the two polymerized phases) did
not show good convergence at the widths we were able to consider, and therefore it was
not possible to obtain any reasonable estimates for the critical exponents on this boundary.
This problem may also be associated to the fact that in part of this boundary the transition
should be of first order. We found evidence of this boundary for the solution of the model
on square lattice, and it was found before in the solution on the four-coordinated Husimi
lattice [4]. It is remarkable that the solution of a model for interacting polymers on a four-
coordinated Husimi lattice leads to similar phase diagrams [17]. This might be understood
since the presence of crosslinks favours more compact configurations of the polymer, as
do the interactions in the attractive polymer model. Evidence has been found [18] that two
polymerized phases may also be present in the phase diagrams for self-attracting branched
polymers in two dimensions, with phase diagrams which resemble the ones we obtained
in this work and in [17]. Actually, all configurations of the polymer we considered in
this work are also present in the model of branched polymers, but since we only accept
configurations that correspond to a single walk with crossings at sites of the lattice, some
branched polymer configurations are not allowed in the model we considered here. In
view of the results presented here, one might ask if two polymerized phases may also be
found without self-attraction of the branched polymers. We are presently investigating this
possibility.
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Figure A1. α and β, possible configurations of the
columnsi and i + 1 on a strip of widthL = 4.

Figure A2. One element of the transfer matrix. The
statistical weights are explained in the text.

Appendix. Some elements of the transfer matrix

We will illustrate how the transfer matrix is built by an example: the calculation of one
element of this matrix forL = 4. To build the necessary configurations to the calculation of
the transfer matrix, we associate indexes to the sites of the strips of widthL (see figure A1).
These indexes are assigned in the following way.
• If a bond arrives at a site from the left which is directly linked to the origin, this

site will have the index 1. Since we want the polymer to pass through the whole strip,
always one site in each column will have this index (the origin is at the left end of the
strip). In the above example, the second site in theα configuration and the third site in the
β configuration have this index.
• If the site is not connected to another site to the left, it has the index 0. The first site

in theα configuration and the first, second and fourth sites in theβ configuration have this
index.
• Finally, if two sites of the column are connected through a walk to the left, both will

be given the same, index larger than 1. The third and fourth sites in theα configuration
have the index 2 and in theβ configuration there is no pair of sites like this.

From the observation of figure A1 we note that there are two possible ways for a
polymer to have theα configuration in columni and theβ configuration in columni + 1.
These possibilities are shown in figure A2. One of them has four bonds (statistical weight
x4) while the other has two bonds and one crossing bond (statistical weightx2y). The
element of the transfer matrix associated with these configurations will be

〈α|T |β〉 = x4+ x2y (A1)

whereT is the transfer matrix.
To accomplish the calculations we need all elements of the transfer matrices up to

the largest widths we considered. As the size of the transfer matrix increases quickly,
computational limitations fix the largest width we were able to consider. We may calculate
the number of configurations,Ns , for a column of widthL having the index 1 on the first
site and a number of pairsNp of sites linked together, through the expression

Ns = (L− 1)!

2NpNp!Nz!
(A2)

in whichNz = L− 1− 2Np is the number of sites in the column with index equal to zero.
The total number of configurations,NS , is obtained by summing over all possible numbers
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Table A1. Number of states and size of the transfer matrix for the studied widthsL.

L 3 4 5 6 7 8 9 10
NS 2 4 10 26 76 232 764 2620
N 6 16 50 156 532 1856 6876 26 200

of pairs, that is

NS =
int( L−1

2 )∑
Np=0

Ns. (A3)

The sizeN of the matrix is obtained by

N = L×NS. (A4)

The sizes of the matrices for the widths we studied are shown in table A1. As an
example, we show below the transfer matrix forL = 3:

T =


x x2+ x3 x2+ x3 x3+ x2y 0 0

x2+ x3 x x2+ x3 0 x3+ x2y 0
x2+ x3 x2+ x3 x 0 0 x3+ x2y

0 x3+ x2y x3+ x2y x3 0 0
x3+ x2y 0 x3+ x2y 0 x3 0
x3+ x2y x3+ x2y 0 0 0 x3

 . (A5)
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